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Abstract

The two-dimensional compressible Navier-Stokes equations are solved by a perturbation
expansion in the parameter (Mach number)2 /Reynolds number. A fortieth-order solution is
generated by a computer algorithm. These series are then summed as convergent series of
diagonal Pad6 approximants. Effectively-exact solutions have been found for Reynolds num-
bers between zero and 1000 and a range of subsonic Mach numbers in the case of fully-devel-
oped isothermal flow between parallel side walls. Choking of the flowis shown to occur for a
moderate value of channel Reynolds number. The two-dimensional velocity and pressure fields
are obtained. The engineering assumption that friction factor is sensibly independent of Mach
number may lead to significant underprediction of head loss in the laminar flow regime.

1. Introduction

In this paper we will discuss the effects of compressibility in two-dimensional channel flow of a
viscous liquid. For simplicity, the discussion is restricted to isothermal laminar flows and
effectively exact solutions of the compressible Navier-Stokes equations will be obtained.

Finite Mach number effects are important in a variety of applications. Although gas
pipelines are usually run at low subsonic Mach numbers, there are significant changes in
pressure due to the great lengths over which friction acts; thus the flow may not be treated as
incompressible. On the other hand, the isothermal assumption is considered to be quite good
for these flows, provided rapid variations in flow properties do not occur in which case an
adiabatic assumption might well be more appropriate. The study of the laminar compressible
regime is immediately applicable to high-speed gas flow through narrow passageways; i.e. the
general field of gas-film lubrication. Typical applications include the design of externally-pres-
surized thrust bearings and pressure relief values. A number of other devices are discussed by
Gross [5].

It is well known that multiphase mixtures have acoustic wave speeds that are remarkably
low. Fox [4, p. 92], for example, gives data for mixtures of air and water. For almost the entire
intermediate concentration range, the wave speed is roughly an order of magnitude less than
the sound speed for either constituent alone. In these cases compressibility becomes important
at quite moderate flow velocities.

The present study deals with the simplest of all realistic geometries: fully-developed flow
between parallel side walls. The differential equations and boundary conditions are treated
exactly, however. No simplifying assumptions, e.g. boundary layer or one-dimensional
gasdynamic theories, are employed here. Certain other simple geometries, such as axisymmetric
pipe flows, can be treated without major modification. Also, the perturbation technique to be
presented here can, in principle, be applied to much more complicated flows.
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The mathematical character of the solutions of the compressible Navier-Stokes equations has
not been deeply explored. While a few closed-form solutions have been found, they are
restricted to one-dimensional cases (see Pai [8, Chapter IV]). It is interesting to note that
compressibility causes the system of equations to remain nonlinear even in the creeping-motion
limit Re - 0. A number of solutions of the incompressible Navier-Stokes equations have been
found and have been confirmed experimentally; their ability to predict fluid motion, within the
appropriate parameter range, is beyond dispute. This statement cannot be made with equal
enthusiasm in the compressible case. For example, Stokes' hypothesis that the bulk viscosity
A + (2/3)i can be taken equal to zero has been used by virtually all subsequent authors.
Indeed, we adopt it in the present work. It can be rigorously justified only for monatomic
thermally-perfect gases and its general validity has been questioned by Lagerstrom [6, Section
B.3] and others.

The present perturbation scheme is based on the principle of slow variation. That is, for
sufficiently small viscosity and/or mass flow rate, flow properties can be expected to vary
slowly with distance along the channel. To a first approximation, the velocity profile may be
assumed to be parabolic, just as in the incompressible case. The magnitude of the velocity will
increase, as the pressure and density decrease, down the channel, in such a way that mass flux
is conserved. By appropriate nondimensionalization and resealing of the governing equations, it
becomes clear that the above, intuitive, solution is valid when the parameter = yM2 /Re is
very small. Here M is the local average Mach number at a station and y is the ratio of specific
heats. In this report we develop the solution as a high-order perturbation series in . These
series may then be summed very accurately through the use of Pad6 approximants.

The slow-variation principle is closely related to the thin- and slender-body theories. In the
context of channel flow, Blasius [2] showed that incompressible flow in a channel of slowly
varying cross-section could be computed as a series expansion in a parameter equivalent to the
local wall slope. The leading term is the well-known Poiseuille solution. Blasius' series was
extended to second order by Abramowitz [1]. Lucas [7], in an unpublished dissertation,
developed a computer algorithm to extend the solution to very high order. He then used Pad6
summation and was able to compute, for example, laminar separation and reattachment in a
divergent channel. A more general discussion of slow variations as a perturbation procedure in
mechanics has recently been given by Van Dyke [11]. He points out that, in many cases,
slow-variation approximations are much more powerful than the more common slight-variation
approximations. Indeed, the former often have the desirable property that they are uniformly
valid in space.

In Section 2 we state the full problem and develop an algorithm for generating coefficients
in a series solution. By a similarity argument, based on the invariance of the solution to the
choice of origin in the streamwise direction, it is shown that the number of independent
variables can be reduced. Computed results are presented in Section 3. 'Mathematical choking'
of the flow, i.e. the inability to analytically continue the solution past a station at which
conditions are near-sonic, is demonstrated for Re > 0(10). Pad6-summed pressure and velocity
profiles are presented for a range of Reynolds and Mach numbers. We calculate the friction
factor variation with Mach number and show that the usual definition of friction factor, based
on one-dimensional theory, appears to be defective. This latter point is more fully discussed in
Appendix I.

2. Formulation

We consider steady flow of a compressible fluid in a nominally infinite two-dimensional
channel with parallel straight walls separated by a distance 2R. Gravity and hence buoyancy
effects will be neglected. Let x and _y be cartesian coordinates in the streamwise and transverse
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directions respectively. The flow field is assumed to be symmetric about the channel centerline
y = 0. The fluid is taken to be a thermally perfect gas; thus the density and pressure are linearly
related according to

= 7yf/a 2 (1)

where y is the ratio of specific heats and a, the sound speed, is a given constant by virtue of the
isothermal assumption.

Denoting the velocity field by (, vi) and using equation (1), the continuity equation
becomes

(pI) + (~) = (2)

where subscripts signify partial differentiation. The constant mass-flow rate (per unit width) in
each half-channel is given by

* = jfRap dy.

Equation (2) is satisfied identically by the streamfunction defined by

I, = p, I = -. (3a,b)

The x and y momentum equations may now be written as

2 2

MauiPi =- yPi +Y 3 "*i + + 3 05;v~ji ),(4)

2 2

~-i tis = - Tp ~ + 3 T (1;+ + ½3 ), (5)

where Stokes' hypothesis concerning the bulk viscosity, see Schlichting [9, pp. 57-60], has been
invoked. Unlike the incompressible flow case where introduction of a streamfunction reduces
the number of dependent variables without substantially complicating the governing equations,
here the streamfunction is taken as an additional unknown in order to eliminate cubic products
in the momentum equations. This results in a significant simplification in the mechanized
perturbation calculations.

Equations (3) through (5), with suitable boundary conditions, determine the unknowns a, ,
p, and I'. The no-slip boundary condition on the channel walls requires that

a(x, _R) = , (, +R) = 0. (6a,b)

The streamfunction is taken to vanish on y = 0, the channel centerline. On the walls it assumes
the constant values

+(R, +R)= a2 /y. (6c)

The assumption of bilateral symmetry of the channel flow requires that i and be even
functions of y while and +' are odd functions. Selecting an arbitrary station along the
channel as = 0, we choose the wall pressure there as reference, i.e.
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The problem may be made nondimensional by selecting R, p0, and a2 /'y as units of
length, pressure, and streamfunction respectively. The reference velocity then becomes

a2m
Uref = ypoR ·

uref is approximately equal to the mean value of the streamwise velocity at = O; it is not
exactly the mean value however for, as will become apparent, compressible channel flows are
characterized by a small transverse pressure, and hence density, variation. In terms of
dimensionless (untilded) variables, the equations may be written as

Ty =U, x =-pv, (7a,b)

Re(yUx- Xuy ) =-Px + 4Uxx + U + yx (8)

Re( 4Tv, V-q) =- + Vyy + xx + uyx. (9)

The boundary conditions become

u(x, 1) = v(x, 1) = O, (x, 0) = 'I'(x, 0) = 0, (x, 1) = 1, p(O, 1) = 1. (10a,b,c,d)

The parameters in equations (8) and (9) are the Reynolds number based on the channel
half-width

Re = A/IA (11)

and

E = (a 2LzL)/(po2R 2 ) = yM2 /Re. (12)

Here M = uref/a, a characteristic Mach number at the station x = 0. Notice that the dimen-
sional scaling of the problem has reduced the number of independent parameters from six to
two.

For sufficiently small values of , flow properties may be expected to vary slowly with
changes in the stream-wise coordinate. To incorporate this slow variation in an approximate
solution we introduce the rescaled coordinate

= EX. (13)

In terms of the new independent variables (, y), the system of differential equations becomes

pu = %ye, P = -t, (14a,b)

Uyy -p = Re(u - uy)- Vy _4 -42U, (15)

py = Vyy + ½32 Uy - 2 Re( v - %Vy) + E3V. (16)

Each dependent variable may now be expanded in a power series in E, e.g.

u = u()(5, y; Re) + u()(5, y; Re) + O(E2 ) (17)
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The equations satisfied by the zero-th approximation are (14a) and (14b) through (16) with
right hand sides replaced by zero. Equations (14b) and (16) immediately reveal that (O) = 0 and
p(O) is a function of only. Equation (15) may then be integrated immediately to yield
quadratic dependence of u(O) on y. Substituting the expression for u) into (14a), integrating,
and applying the boundary condition It(°)(, 1) -= 1 gives a simple ordinary differential equa-
tion for p(0)():

(O) dp = _ 3 (18)
d (18)

Integrating (18) and applying the boundary condition p(°)(0) = 1, we obtain the zero-th order
solution

p() = /1- 6, u(= 3 (1 _y 2 ) (19a,b)

2 Vl -- '

(°) 3 vyy ) u(° = 0. (19c,d)

This elementary solution could have been obtained very simply by assuming that the incom-
pressible Poiseuille solution is valid locally and finding the streamwise pressure (or density)
variation that conserves mass flux down the channel. This is sometimes referred to as a
'lubrication approximation'. The present formalism has been devised so as to imbed this
intuitive solution in a systematic or rational approximation scheme. Note that the solution (19)
already suggests the presence of choking. Equation (19a) predicts that p(O) vanishes and the
velocity becomes unbounded when 5 = 1/6. Thus there is a maximum length for continuous
isothermal flows with friction; in dimensional variables this may be written

(L/R)max = Re/(6yM 2 ) (20)

where Mo is the flow-averaged Mach number at the station from which L is measured. It
follows that no steady subsonic flow with initial Mach number greater than MO can be
maintained. This must be considered only a crude estimate of the choking length, however,
since it is based only on the leading term in an infinite-series development; also equation (19b)
predicts unrealistically large values of velocity as the choking station is approached.

The system of equations (14) to (16) with boundary conditions of the form (10) clearly can
be solved to higher order in . Before proceeding, however, a major simplification remains to be
exploited. In the above formulation, the scaled streamwise coordinate is measured with
respect to an arbitrarily-chosen station. Obviously the computed flow properties must be
independent of this choice of reference station. This invariance or self-similarity can be used to
suppress the explicit dependence of the flow properties on through the introduction of a new
perturbation parameter.

Consider two different reference stations, denoted by subscripts 1 and 2. Let 5' be the
scaled distance of the second station referred to the first. The pressure at a third station, an
unscaled distance x from the first, can be written in the form

(P ) =ft(l, q,; y, Re) (21)

where the subscript w denotes wall or reference pressure. For the present purpose y, like Re,
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may be considered to a passive parameter. Similarly, referred to station 2, the pressure may be
written, in terms of the same function f, as

) =f(2 E2; y, Re). (22)

The reference pressures are related by

( p 2 =f(, * 1, Re). (23)

Combining equations (21) to (23), we obtain the functional equation

f(fl, El; y, Re) =f(f', El; 1, Re)f(C2 , E2; y, Re). (24)

From (13) we have

x = (l/E = 51/fl + 2/E2

while (12) implies that

E2 _ Pw2!

These two relations may be used to eliminate 2 and e2 from equation (24) which, after
dropping the remaining subscript, becomes

f(~, ; y, Re) =f(e*, e; 1, Re))f f, ) ,' Re). (25)

This last form of the functional equation is valid for all values of C and *. Setting 5 = * and
defining the local perturbation parameter

= E/p 2, (26)

the functional equation can be written as

P = P( ; y, Re). (27)
Pw

Equation (27) merely states that the transverse pressure variation does not depend explicitly on
5 provided that it is referred to the local wall value. Recognizing that the reference velocity is
inversely proportional to the reference pressure while the reference streamfunction is indepen-
dent of reference pressure, we can, by a similar argument write immediately

u=-U(e; y, Re), (28)
Pw

v = - V(; y, Re), (29)
Pw
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and

I ='I (; y, Re). (30)

The functional form of the streamwise wall-pressure variation may also be inferred from
equation (25). Differentiating with respect to , we obtain

f(j, ; 1, Re) =f,( - ; 1, Re)

where f, is the partial derivative of f with respect to the first argument. Setting E = *, we
obtain

d p~2(31)
= s(e; Re) (31)

where s is a function to be determined as part of the solution.
The system of equations may now be rewritten in terms of the new variables introduced in

(27) to (31). The transformation of derivatives is best illustrated by an example; thus

pw= S3U~+ -(2WU - U)u PI U I t ) = P Ue PP p2w 3p

where

as 2p apwI ES

at PW at PW

has been used. The full system now becomes

tUyy P =(-Pe- Re 2

4YY-2 =e UitY + Vy/6) + 2 ( U, Re tyU + Re Uy* + Vy -s U)

+e 3 (-4sUe- s'U) - 4 (s'U~ + sU,), (32)

tPY, = I4tl( + 2( - -Y +Re + V 2 -3e+ Re 'IVy + sV)

+e4(3sV + s'V) + e5 (s'V + sV,,), (33)

PU= *y, (34)

PV = f 2sPe. (35)

In the streamwise and transverse momentum equations, (32) and (33), we have introduced the
additional variable

t =I d (36)
s dp 2
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in order to eliminate cubic products. Henceforth the Reynolds number will be considered to be
a fixed constant; thus s' is equivalent to ds/df.

Each unknown in (32) to (36) will now be expanded as a power series in e:

s = E s, i ', t= E ti i, (37a,b)
i=o i=o

U= E (y)e, (38)
i=o

V= E Vi(y)ei, (39)
i=o

P= E P(y)ei, (40)
i=O

' = E (y)ei'. (41)
i=o

We have, in addition, the boundary conditions

Po(1)=1, o(1)=l1; U(1) = 0, V (1)=O, i= 0, 1...;
P(1) = 0, (1) = 0, i= 1, 2,....

The coefficients si and t will be constants, for given Re, while the other subscripted variables
are polynomials in y. It can be shown inductively that a sufficient assumption is

2i+1 2i 2i 2i+1

Ui= E Uijy2 j , V= E jy2j+l, Pj= E ijy 2 j , ti= E i y2j+l
j=o j=O=0 O j=0

Once these expansions are substituted into the governing equations and coefficients of each
power of and y are equated, the unknowns at any order may be found as sums of products of
lower-order coefficients. Details of the algorithm are given in Appendix II.

For a series solution to order N, the computer storage required is proportional to N 2 while,
consistent with the number of nested summations, the computation time varies as N4.

An alternative method of solution, not explored in the present paper, is to attack the system
of equations (32)-(36) by a finite-difference procedure. At least formally, the solution may be
marched, starting with e = 0 and using the zero-th order solution (19) for the initial values. The
stability of such a calculation is an open question, however.

3. Discussion of results

A number of the features of the computed solutions may be surmised by inspection of the
leading terms in the series expansion. To second order in , the coefficients in the series for U
and NI may be recognized as rational numbers from their decimal expansions. Thus

U(, y) _ 3
U('e =2 + Re3-(-5+ 2 8 y2-7y4)-e2 s(1+3Y2)

Re2 -27 (2193- 9163y 2 - 6853y 4 + 5159y 6 616y)] +

(42a)
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Y 2 3 _Y2+Re2-(1- y)2(5 y)- 2 3 Ee 280\Y kYJ

+ 2(1 y2)2 + 4312006579 - 1802y 2 + 1589y 4 -168y6)] + (42b)

Similarly the expansions for the transverse velocity component and the pressure are, to third
order

27~ly~'[ 27- Re.V =y(1-y2)2.[27Re (5 -y 2 )

- + 10780 ( 12519 -614y 2 + 1589y4 - 1686) + (42c)

3 Re
P= 1 + 2½(1 -y2) + 280 (873- 2133y 2 + 1575y4 - 315y 6 ) + .... (42d)

Note that both V and the cross-channel pressure variation are O(q2 ); that is, for given
Reynolds number, they are fourth-order in the local Mach number. For low subsonic Mach
numbers, these components are quite small; they may not be negligible, however, even in
engineering applications, because of their relevance to the question of stability of these laminar
flows. One suspects that this may be particularly true for horizontal channel flow where the
implied transverse density variation will lead to asymmetric stratification. A complete analysis
must, of course, include finite Froude number, i.e. gravity, effects.

The streamwise variation in wall pressure may be extracted from the function t defined in
equation (36). To second order it can be written as

t(_)- d = -(6+ Re_ 2 + 2695 ) + (43)
dp2695

Recognizing that E = Ex and C = E/p 2, we have the relation

dx=-t() d.f2

Equation (43) may now be integrated term by term subject to the initial condition p = 1 or
E = at the reference station x = 0. The second-order result is

EX= R R= (1 -p) + 39syM2 log pw

+ Re2)(2 +=O( M0 ) (44)

Here we have used the definition e = M2/Re where M0 is the reference or 'entry' Mach
number at x = 0. Notice that the M2 term or the right side of (44) is negative, leading to the
possibility of a maximum length for continuous isothermal flow, i.e. the choking phenomenon.

The algorithm described in the preceding section has been programmed in FORTRAN and
run to order E40 for a range of Reynolds numbers from 0 to 1000. The fortieth-order solution
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required several seconds of central processor time and about 20000 words of storage. By
running in both single and double precision, it is possible to assess the importance of round-off
error. Typically round-off error resulted in the loss of one significant figure for every three
orders in . It should be noted that round-off is much more important in high-order series
methods than in standard finite-difference or finite-element methods since the Pad6 table
extracts information from the least significant portion of each coefficient.

It is often possible to use the results of a high-order series solution to infer information
about the singularity structure of an unknown function. For example, if the ratio of successive
Taylor series coefficients, a/an_1 say, tends to approximate linear variation with l/n, one
may, by comparison with the coefficient behavior of the binomial expansion, estimate the
location of the singularity that limits convergence and the 'critical' behavior near that point. On
the other hand, if the unknown function possesses a number of singularities, with none clearly
closest or strongest, the series coefficients will be erratic. However, it may still be possible to
roughly predict the radius of curvature or, at a minimum, to determine whether the series is
convergent at all for sufficiently small values of the parameter.

Table 1 shows coefficients tn in the series (43) through 20th order for several values of Re.
Their behavior reflects the fact that the coefficient of E is a polynomial of order Re' that
contains only even or odd order terms as n is even or odd. No definite structure is apparent in
any of the series except for the general rate of growth of the coefficients with increasing n. The
pattern of signs is irregular in general, a pattern which continues up at least 40th order in E. For
small values of Re, the magnitude of the coefficient growth suggests a radius of convergence in
the complex E-plane of order 10-1. From the series for Re = 100 and 1000, it is apparent that
the coefficients scale like Ren; thus'a more appropriate parameter for large Reynolds number is
ERe = yM2 . The rate of growth and the pronounced irregularities in these series suggest the
presence of several singularities at a distance of about 1.0 in the yM2 -plane. If one of these
singularities lies on the positive real axis, the convergence limit for the series solution could be
due to a physical singularity corresponding to choking due to local velocities near the sound
speed.

Table 1. Coefficients in the series tn".

n Re = 0 Re = 1 Re = 100 Re = 1000

0 -0.1667 -0.1667 -0.1667 - 0.1667
1 0 0.2571 2.5714E01 2.5714E02
2 - 2.000 - 2.0579 - 5.8085E02 - 5.7887E04
3 0 - 5.3298 -7.8894E04 - 7.8375E07
4 7.1271E01 6.5560E01 - 2.307E06 - 2.2645E10
5 0 3.8847E02 9.0429E08 9.0147E13
6 - 3.9692E03 - 3.1106E03 7.3379E10 7.2620E16
7 0 - 2.8320E04 -1.5765E13 -1.5689E20
8 2.4695E05 1.4870E05 -1.5310E15 - 1.4974E23
9 0 2.433E06 3.2813E17 3.2922E26

10 - 2.4137E07 - 6.0298E06 2.1500E19 2.1327E29
11 0 -3.2371E08 -6.3514E21 -6.2733E32
12 2.6543E09 - 3.4133E08 - 2.1140E23 -1.9954E35
13 0 2.2226E10 8.8076E25 8.7428E38
14 - 1.3289E11 6.5945E10 6.4750E27 6.3484E41
15 0 - 4.8655E12 -2.1021E30 - 2.0781E45
16 1.3671E14 -7.4087E13 1.0342E31 1.39807E47
17 0 1.6324E15 1.4233E33 8.8912E49
18 3.2267E16 - 1.0497E16 1.1967E37 1.1895E55
19 0 1.45,3E18 -4.5032E39 -4.4944E58
20 4.3502E18 - 1.224E18 1.570E42 1.5729E62
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Even when the singularity structure of a power series is not known, it can often be summed
to high accuracy by the use of Pad approximants. A diagonal Pad6 approximant is a ratio of
two polynomials, each of order N, whose coefficients are selected so that the rational fraction,
when expanded for small argument, agrees with the power series from which it is formed to (at
least) order 2N. Symbolically we write, for a function f(x),

f(X) Ef xN±O( x 2N+)a aalx + ... +aNx +O(x2N+ )

n=O X X2 1 + bx + ... +bNxN

[N/N]f+ O(X2N+1).

Provided that the closest singularity of f does not lie on the positive real x-axis, the sequence of
approximations can be expected to converge much faster, for x > 0, than the series from which
they are formed and will, in fact, converge for values of x for which the original series diverges.
Details of the theory of Pad6 approximants and examples of their successful application to
problems in fluid mechanics and solid-state physics may be found in the book edited by
Cabannes [3]. In the results presented below, the series have been summed by diagonal Pad6
approximants that have converged to at least graphical accuracy.

In Figs. 1 and 2 we show the variation in wall pressure with distance for large and small
values of Reynolds number. This behavior is calculated from a high-order version of the
expansion (44) that has been summed with the aid of Pad6 approximants. Specifically we have

_ __ _ [ NNRe 2] 

(45)(45)

where

t3 tj+ j
+... +

and [N/N]F(E) is a diagonal Pad6 approximant computed from this series. Figure 1 gives the

1.

.5

erm

0 1000 2000
x/R

Fig. . Wall pressure variation with distance; Re = 100, yM2 = 0.01. - ad [5/5], [6/6].
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1.

a: .5
o

0 5 10

x/R

Fig. 2. Wall pressure variation with distance; Re = 0.01, yM2 = 0.0002. - Pad6 [5/5], [6/6].

results for a channel half-width Reynolds number of 100 and an initial value of Mach number
parameter yM0 = 0.01. The one- and two-term approximations are indicated by dashed lines.
The solid curve is, in fact, two curves drawn using expression (45) with N = 5 and 6
respectively. Within graphical accuracy, the Pad6 approximants agree with one another and
also with the two-term approximation. This latter result predicts choking, i.e. a maximum
length for continuous isothermal flow, when t = d/dp 2 = 0 or, using two terms in equations
(43), when

yM 2 = 35 (46)

Here Ml is the station-averaged local Mach number. Since the centerline Mach number is
larger than M, by a factor of about 1.5, the centerline condition at this critical station is
approximately sonic. The critical station is located 1530 half-widths downstream of the
reference station and the critical wall pressure is about 1/8 of the reference value. One may
infer that a further reduction in the downstream pressure will not result in a corresponding
increase in the mass flow rate.

The situation is rather different at low values of Re. Figure 2 shows the pressure variation
for Re = 0.01. The one- and two-term approximations are virtually coincident while the
Pad6-summed results deviate markedly and exhibit a pronounced inflection point. Thus the
maximum length for continuous isothermal flow is longer than would be predicted by the
low-order expressions. The largest value of x/R shown in Fig. 2 corresponds to a local value of
yM2 _ 0.11. For small Reynolds number, flows at near-sonic conditions cannot be predicted
with confidence; the loss of accuracy may well be due to the development of a complicated
flow structure, rather than incipient choking.

Transverse pressure profiles are shown in Figs. 3 and 4 for fM = 0.316 and 0.775
respectively. The Reynolds number for both cases is 10. Therefore these profiles show that
transverse pressure gradients develop, within a channel, as the longitudinal flow accelerates to
compensate for the reduced mass flow as the pressure, or density, is reduced. The dashed line is
the second-order result

P/Pw 1 + 2(3/2)(1 _y 2 ), (47)

which, when compared with the converged Pad6 results is seen to be a reasonable approxima-

I
I I I
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P/Pwa - 1

Fig. 3. Transverse pressure profile, Re = 10, f/M = 0.316. - - -- - - second-order theory, Pad6 approximants.

tion at the lower Mach number. In Fig. 4, on the other hand, equation (47) grossly underpre-
dicts the pressure difference between the centerline and the wall, which in this case is about 4
per cent. In all cases it appears that the pressure in the middle of the channel exceeds the value
on the wall at a given station. Note also that the minimum pressure, in Fig. 4, occurs not at the
wall but at y/D _ 0.9.

A typical horizontal velocity profile is shown in Fig. 5. We see that the effect of finite Mach
number is to flatten the profile relative to the incompressible Poisseuille parabolae, the effect
becoming more pronounced as the Mach number is increased. For comparison, the vertical
component of velocity, between the centerline and the upper wall are shown in Fig. 6 for a
large and small value of Reynolds number. The vertical velocity is always small corresponding
to a maximum streamline inclination of about 0.5 degree in each case. For large Re the flow is
inclined towards the channel wall, while for Re = 0.01 the flow is generally tilted towards the
channel centerline.

y/D

P/P - 1

Fig. 4. Similar to Fig. 3, except M = 0.775.
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y/R

U

Fig. 5. Horizontal velocity profile, Re = 100, EM = 0.775, - - - -- - Poiseuille flow, - [6/6] Pad6 approximant.

A quantity of significant engineering interest is the shear stress T, at the channel wall. It is
usual practice in order to assess the effects of compressibility, to refer Tw to the local dynamic
head to form a dimensionless coefficient usually called the skin friction coefficient or the
friction factor in hydraulics. In terms of local reference quantities, we have

2 - 2
= ~PrefUref = 2R 2

Since Tw = [aLi/a I - R one finds, for the friction factor f , in dimensionless units,

2 dUy
i= Re dy (48)

Re dy Y-1

v

Fig. 6. Two vertical velocity profiles. (a) Re = 100, /M = 0.775, ( = 0.006); (b) Re = 0.01, fM = 0.045, ( = 0.2).
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Expressing the right side of (48) as a series in , we have, through second order,

f, =finc[ + -Re!2 + 2( - 3 Re + 303)] (49)

where

6
Afi= Re (50)

is the friction factor for incompressible flow. (Note that the numerical constant in equation (50)
becomes 12 if the channel width or the hydraulic radius is used as reference length or 24 if the
unit of length is the hydraulic diameter.) Thus the quantity in square brackets in (49) can be
interpreted as a correction factor due to finite Mach number. It is interesting to note that in
turbulent pipe flows it is apparently standard practice to ignore compressibility for virtually all
subsonic Mach numbers (See Shapiro [10, p. 184]).

The friction factor discussed above turns out not to be the usual one. Using one-dimensional
gasdynamic and a simple momentum balance, Shapiro [10] obtains, in effect,

2R dp (1- yM2 )

f2 p d (51)

The friction factor f2 is nominally defined as Tw/q just as is fl. However, the simple theory is
apparently defective; this anomaly is discussed in Appendix I. It may be useful to regard f 2 are
merely a special nondimensional representation of the pressure gradient. By calculating f2

according to (51), the defective one-dimensional theory can be made to yield correct results for
the pressure drop in laminar channel flow. In terms of the dependent variable t(e; Re) defined
in equation (36), f 2 may be written as

(1 -yM2)
f2 Re (52)Ret

which may be expanded as

f2 =finc[1 + ±i Re R-2(12- 46242 Re 2) + O(e3)]. (53)35 ~~~9435

0.10

_n An

I I 1 + +--

YM2 0.10

12

Fig. 7. Fractional change in friction factors due to finite Mach number using Pade summation. The vertical axis is
f/finompressible -1- f and f2 are defined in equations (48) and (51) respectively; Re 1.
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0.5

-0.5

f2

f,

=M2 X
0.5

yM2

Fig. 8. Similar to Fig. 7, except Re = 100.

Comparing this expansion with (49), it may be seen that the leading-order compressibility terms
differ by a factor of 19/12.

In order to assess the effects of compressibility on friction factor for the isothermal, laminar
flow considered here, high-order versions of equations (49) and (53) have been recast as
sequences of Pad6 fractions for several values of Re. In Figs. 7 and 8 we show Pad&-summed
results for f, and f2 as functions of yM 2. Each curve shown is, in fact, four distinct curves, the
[3/3] through [6/6] Pad6 approximants plotted upon one another so as to illustrate the degree
of convergence of each sequence. A slight broadening of each 'curve' can be observed at the
larger values of yM 2. Results for the smaller Re cases seems to validate the engineering
hypothesis that compressibility effects are minor, at least for the range of Mach numbers shown
in Fig. 7. The situation is quite different for Re = 100 (fig. 8). Here neglect of compressibility
results in a significant underprediction of effective skin friction. For yM 2 = 0.5, for example, f
and f2 exceed the incompressible value by about 30 and 40 per cent respectively.

Appendix I

On the one-dimensional theory of viscous compressible flow

Most books on gasdynamics or hydraulics that consider compressible flow with friction (e.g. Shapiro [10, p. 162]) find
an expression for the skin friction using a simple one-dimensional theory. It is the purpose of this appendix to explain
why the leading-order effect of compressibility on the skin friction is predicted incorrectly, especially in the laminar
flow regime.

In the one-dimensional theory one assumes that pressure P, density p, and velocity u are functions of x only. A
momentum balance over an elemental area of length dx and constant width 2R immediately yields

- R dp - T, dx = R d( 2 ) = RPU dU. (A.1)

Here we have used the continuity equation pi = constant. Equation (A.1) may now be compared with the integrated
form of the two-dimensional x-momentum equation. The latter may be written as

p(UUX + UUy) = -P ]
+

uyy + 3Uxx + 3 yx. (A.2)

Integrating each term in (A.2) over (0, R) and denoting averages by an overbar, we obtain

(A.3).ofR dy = R ,



A perturbation solution for compressible viscous channel flows 85

J uyy dy= au I = - , (A.4)

fy dy = 0. 0jl = . (A.5)

The integral

f
oR, Au, dy = LRu,,

is, in fact, not zero but a positive quantity. It represents the contribution of dilation to the normal stress and is
incorrectly omitted from (A.1). It is, however, O(f2) and thus does not account for the leading-order discrepancy. The
integral of the convective term, on the other hand, becomes

p(uu, +x Uy)dy=J puuxdx- u(pv)dx d R p2dy

d PU d 7 2 + (e2). (A.6)

Here we have integrated by parts and used the two-dimensional continuity equation. Also, in the last line, we use the
fact that the transverse density variation is O(12). Combining the above results, and using a form equivalent to (A.1),
we write

-R dl-wdx = R d(u' 2 )+O(t 2 ) = R d(-) +(2). (A.7)

The error in the friction factor at O(1) can now be seen to arise from replacing u2 by 2. In a turbulent flow, the mean
velocity profile is rather flat and these quantities may almost be equal. In the laminar regime, however, this
replacement causes a significant error.

Appendix II

The recurrence relations for generating the series coefficients

The partial differential equations (32) through (35) in Section 2 become, after insertion of the double-series expansions,

k-1

- (j J+l )(2j+l)Uk .,+ --(k -)Pkj+( 2k-i )(2j+1) Vk-,- 2 (j +l)(2j +1) E Uj+ltk i

k I i

+Re I UIM'klij.ij_(2kl- 1-2ij - i- j)
i-O 1-0

k-2

+3 E U,jSk_( ±(1+2i-2k-4ik),
i=o

k-I k-1

Pkj = (2k-3)Uk-2, -8( 2 j +l) tk-1-iVj+6 E tk-iPij
i=O i=1

k-2 j-1

3 Y Vi+k-2-i j-)-1[2(i+)-(21+1)(k-)]
J i=0 /=0

J =2
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k-1 

(2j+l) kj E UPk ij _ + Ukj, (A.10)
i=o 1-0

k-1

Vkj iiijsk-l-i- Viipk ij-I (A.11)
i=l 1=0

All sums are taken to be identically zero when the lower limit exceeds the upper. Similarly, coefficients with either
subscript negative are also identically zero. Subject to the expanded form of the boundary conditions given in Section
2, a simultaneous solution of these algebraic equations may be found for each pair of integers (k, j).
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